Rancang Bangun Buck Converter Berbasis Rangkaian Analog Dan Micro Controller ATMega 328P

  • Restu Mukti Utomo Politeknik Negeri Balikpapan
  • Hilmansyah Hilmansyah Politeknik Negeri Balikpapan
  • Angga Wahyu Aditya Politeknik Negeri Balikpapan
Keywords: DC-DC konverter, buck converter, IGBT

Abstract

Buck converter yang merupakan bagian dari DC-DC konverter banyak di aplikasikan dalam banyak bidang seperti renewable energy untuk pengembangan dan optimasi photovoltaic / sel surya, electric vehicle, charging systems, dan teknologi lampu hemat energi atau light emitting diode (LED). Tegangan dan arus keluaran dari buck converter sangatlah dipengaruhi oleh perubahan frekuensi switching pada komponen semikonduktor yang digunakan seperti : transistor, MOSFET, dan IGBT. Sistem buck converter ini dirancang menggunakan IGBT dikarenakan arus keluaran yang diinginkan cukup besar (Io = 7A). Pembuatan dan pengembangan buck converter dapat dilakukan dalam beberapa bidang, diantaranya : rangkaian analog, microcontroller, hardware in the loop (HIL) dan FPGA in the loop (FIL). Pada paper ini, buck converter dibuat dan dikembangkan dengan menggunakan rangkaian analog dan microcontroller. Pada penelitian ini, pengujian buck converter dilakukan pada perubahan duty cycle (25%, 50% dan 75%) dan perubahan tegangan sumber (8 V, 10 V, 12 V, 14 V dan 16 V). Sedangkan parameter yang diamati adalah daya keluaran, arus keluaran, tegangan keluaran dan efisiensi. Gambar 2 menunjukkan bahwa perubahan duty cycle akan mempengaruhi pada daya keluaran. Sedangkan gambar 3 menunjukkan perubahan duty cycle akan mempengaruhi efisiensi. Berdasarkan tabel 2, tabel 3 dan tabel 4 perubahan duty cycle berbanding lurus dengan tegangan keluaran, arus keluaran, daya keluaran dan efisiensi.

Downloads

Download data is not yet available.

References

Benyamina, A., & Moulahoum, S. (2019). FPGA in The Loop Based Single Phase Power Factor Correction Factor Correction. Progress in Applied Electrical Engineering (PAEE) (pp. 16). Koscielisko, Poland: IEEE.
C, D., & Shenoy, K. (2017). Design and Simulation of Synchronous Buck Converter For LED Application. International Conference On Recent Trends In Electronics Information & Communication Technology (pp. 142 - 146). Bangalore, India: IEEE.
Dufour, C., Cense, S., & Bélanger, J. (2013). FPGA-based Switched Reluctance Motor Drive and DC-DC Converter Models for High-Bandwidth HIL Real-Time Simulator. European Conference on Power Electronics and Applications (EPE) (pp. 1-8). Lille: IEEE.
Gregoire, L.-A., Al-Haddad, K., & Nanjundaiah, G. (2010). Hardware-in-the-Loop (HIL) to reduce the development cost of power electronic converters. India International Conference on Power Electronics (IICPE). New Delhi, India: IEEE.
HADID, A. B., & SAAD, K. B. (2015). HIL simulation of a DC-DC converter controller on a Zynq. International Conference on Modelling, Identification and Control (ICMIC). Sousse, Tunisia: IEEE.
Kermadi, M., & Berkouk, E. M. (2016). Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study. Renewable and Sustainable Energy Reviews, 369-386.
Khan, H. S., & Memon, A. Y. (2016). FIL Simulation of Sliding Mode Controller for DC/DC Boost Controller. International Bhurban Conference on Applied Sciences and Technology (IBCAST) (pp. 112 - 117). Islamabad, Pakistan: IEEE.
Kumar, M., Huber, L., & Jovanoviæ, M. M. (2017). Verification of Control Design and Implementation for Power Supplies by FPGA-in-the-Loop Simulation. Applied Power Electronics Conference and Exposition (APEC) (pp. 3114 - 3121). Tampa, FL, USA: IEEE.
López, J., Jr, S. S., Donoso, P., Morais, L., Cortizo, P., & Severo, M. (2016). Digital control strategy for a buck converter operating as a battery charger for stand-alone photovoltaic systems. Solar Energy, 171 - 187.
Malik, M. S., Khan, H. A., & Zaffar, N. A. (2018). Evaluation of a Single Inductor based SingleInput Dual Output Buck Converter for DC Microgrid Applications. World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (pp. 613 - 617). Waikoloa Village, HI, USA: IEEE.
Nizami, T. K., & Mahanta, t. (2016). An Intelligent Adaptive Control of DC-DC Buck. Journal of the Franklin Institute, 2588-2613.
Rivetta, C., Emadi, A., Williamson, G., Jayabalan, R., & Fahimi, B. (2006). Analysis and Control of a Buck DC–DC Converter Operating With Constant Power Load in Sea and Undersea Vehicles. IEEE Transactions on Industry Applications , 559 - 572.
Swathy, M. K., Jantre, M. S., Jadhav, M. Y., Labde, M. S., & Kadam, M. P. (2018). Design and Hardware Implementation of Closed Loop Buck Converter Using Fuzzy Logic Controller. International conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 175 - 180). Coimbatore, India: IEEE.
V, A. P., Mani, N., & Issac, K. (2017). Switched-Inductor Semi-Quadratic Buck Converter. International Conference on Technological Advancements in Power and Energy (TAP Energy ) (pp. 1-6). Kollam, India: IEEE.
W.Hart, D. (2011). Power Elecronics. New York: McGraw-Hill.
Published
2019-12-31